
CS 9
Week 5 Problems

Andrew Benson
Ian Tullis



⭐ Problem 5-1: Longest Reporting Chain

● At the company Hooli, the hierarchy of employees is very organized. Aside from the 
CEO, every employee reports to exactly one other employee. There is no limit to the 
number of employees that can report to a single employee. There are no reporting 
cycles, and everyone eventually reports to the CEO.

● You have access to a function getReports(username) that returns a list of usernames 
of employees that report to the given employee. (If there are none, the list is empty.)

● Given the username of the CEO, determine the length of 
the longest reporting chain. (Ex: 3 for right example)
○ Extension 1: determine the username of the 

employee with this reporting chain.
○ Extension 2: Suppose instead of a reporting chain 

(which goes strictly up in this reporting structure), 
we care about a chain between any two employees. 
Determine the length of the longest such chain (Ex: 
5 for right example) (Link to Leetcode for Ext 2)

https://leetcode.com/problems/diameter-of-binary-tree/


⭐ Problem 5-1: Longest Reporting Chain

● Hints
○ How would you model the structure of the data you’re given?

○ Do you see any recursive structure? This doesn’t mean you have 
to use recursion, but you could still exploit it.

○ Extension 1: Start with your solution for just the length, and think 
about how you can augment your return value with the username.

○ Extension 2: The two employees must share a common manager 
at some point. If you try each employee, one of them must be the 
“common manager” to the longest chain.



⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros
Mario's extremely basic adventure
(probably like 50 bucks on Switch) 



⭐⭐ Problem 5-2: Not-Very-Super Mario 
BrosIt’s only two rows high. Coins only appear in 
the top row. Enemies only appear in the 
bottom row. Mario starts in the bottom left.



In this game, Mario has two kinds of move
Option 1: Go forward one step

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



Option 2: Jump

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



coins are good
you want as many as possible
because Mario's life is empty

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



enemies do not move
(they've been doing this for 35+ years, the 
excitement isn't there anymore)

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



not OK to walk into enemies
how did you get hit, it was just standing there 

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



OK to land on enemies
because Mario is an asshole 

c'mon man

⭐⭐ Problem 5-2: Not-Very-Super Mario 
Bros



⭐⭐ Problem 5-2: Not-Very-Super Mario 
BrosYou’re given a list of indices of coins and a 
list of indices of enemies. Determine the max 
possible number of coins Mario can get.



⭐⭐ Problem 5-2: Not-Very-Super Mario 
BrosCorrect answer for this example: 3 coins



⭐⭐⭐  Problem 5-3: Electoral Tie

(This was Ian's actual interview question!)

In US presidential elections, each state is worth a certain number of electoral votes. 
The candidate who wins a majority of the popular vote in a state wins all of that 
state's electoral votes (with some exceptions that we will ignore here). There are 538 
electoral votes, so there could in theory be a tie.

Suppose that there are only two candidates, and that the election is very close: each 
state is an independent 50/50 coinflip to go to either candidate. (This independence is 
obviously unrealistic, but we'll gloss over that.)

Our solution will generalize beyond the USA; say there are N states (1 <= N <= 100), 
and the i-th state is worth Vi votes (1 <= Vi  <= 100). Determine the probability of a tie.



⭐⭐⭐  Problem 5-3: Electoral Tie
Example: 2 states, each worth 1.

The probability of a tie is ½. Whoever the winner of the first state is, there is a fifty-fifty 
chance that that same candidate wins the second state.

Example: 3 states, worth 3, 4, and 1.
Call them Balifornia, Boregon, and Bashington.

The probability of a tie is ¼. This happens if Candidate A wins Balifornia and Bashington 
and Candidate B wins Boregon, or the same happens but with the two candidates swapped.

Example: 7 states, worth 1, 2, 4, 8, 16, 32, 64.

The probability of a tie is 0. Whoever wins the 64-vote state wins overall.



Solutions to 5-2 (discussed in-class)



Greedy strategies aren't always
optimal 

2 coins



Why not just try every path?
Exponential number…



Why not just try every path?
Exponential number… so any solution that 
explicitly considers them all is exponential 



0

0

what? we can't get here… 
but you'll see why we 
need it

Solving via Dynamic Programming



0

1

top row cell:
value from downleft,
plus 1 if coin 

0



0

1

0

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0



0

1

0

10

top row cell:
value from downleft,
plus 1 if coin 



0

1

0 1

10

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here



0

1

0 1

10 1

top row cell:
value from downleft,
plus 1 if coin 



0

1

0 1

10 1

1

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here



0

1

0 1

10 1

1

top row cell:
value from downleft,
plus 1 if coin 

2



0

1

0 1

10 1

1

2

1

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here



0

1

0 1

10 1

1

2

1

top row cell:
value from downleft,
plus 1 if coin 

1



0

1

0 1

10 1

1

2

1

1

2

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here



0

1

0 1

10 1

1

2

1

1

2

3

top row cell:
value from downleft,
plus 1 if coin 



0

1

0 1

10 1

1

2

1

1

2

3

2

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here



0

1

0 1

10 1

1

2

1

1

2

3

2

Wait a minute...
Isn't this just the "exponential" slide again?



0

1

0 1

10 1

1

2

1

1

2

3

2

Wait a minute...
Isn't this just the "exponential" slide again?
No! We took linear time.



once we get this far, the strategy 
from then on doesn't depend on 
how we got there



Code!



More space-efficient code!



Don't let Ian forget to 
say the password

(and the solution to 5-3 is on the next slides!)



Solution to 5-3 (spoiler space)



Electoral Tie: Solution
● We can pick off some special cases:

○ If the total number of votes is odd, then the tie probability is 0.
○ If there is one state that is worth more than the total number 

of votes from the other states combined, then the tie 
probability is 0.

● But these only go so far – it'd be better to find a general solution.

● The brute force approach is to explicitly consider each of the 2n 
ways the election could go. (Each state is a coinflip, so the results 
of all n states are essentially given by a binary string of length n.)
○ Unfortunately, this is exponential. Actually a bit worse, O(n2n), 

since processing each possibility takes linear time.



● It's natural to try some kind of backtracking approach
○ but this would also end up being exponential…

● We need a way to avoid doing so much redundant work! Notice 
that, for instance, we consider
○ the first state going to Candidate A, then all the stuff that could 

happen with the other states
○ the first state going to Candidate B, then all the same stuff that 

could happen with the other states
● When there's redundant work, think dynamic 

programming/memoization!

● But even if you see this as a DP problem, it's hard to set it up…



● We'll arbitrarily pretend we're Candidate A.
● We'll go through the states in some arbitrary order

○ as if the results are coming in one state at a time
● We'll maintain a table in which:

○ the columns are the individual states, plus an initial column to 
represent the situation before any results have come in

○ the rows are the possible totals of votes we (Candidate A) 
could have so far

○ each cell represents the number of ways we could have that 
many total votes (row) after results from that state (column) 
come in



● Example: state values 3, 1, 4

Total votes for A Initially After state 1 After state 2 After state 3

0 1 1 1 1

1 1 1

2

3 1 1 1

4 1 2

5 1

6

7 1

8 1

win this state

don't win this state



● Example: state values 3, 1, 4

Total votes for A Initially After state 1 After state 2 After state 3

0 1 1 1 1

1 1 1

2

3 1 1 1

4 1 2

5 1

6

7 1

8 1



Total votes for A Initially After state 1 After state 2 After state 3

0 1 1 1 1

1 1 1

2

3 1 1 1

4 1 2

5 1

6

7 1

8 1



Total votes for A Initially After state 1 After state 2 After state 3

0 1 1 1 1

1 1 1

2

3 1 1 1

4 (tie) 1 2

5 1

6

7 1

8 1

two ways 
to get here

notice that the sum of the i-th 
column is 2i, as it should be answer: 2 / 8



● With a larger table, the savings from those "orange" 
cells (fed by two previous cells) really add up.

● Optimization: We only really need to look at rows up 
to the tie value. Once that value is exceeded, there 
can never be a tie on that branch.

● Another optimization: We don't need to store the 
whole table, since each column depends only on the 
previous one.

● Overall complexity:
○ O(N * sum(Vi)) time (we have to visit every cell, 

constant work per cell)
○ O(sum(Vi)) space

● Note that this only gets around the exponential 
issue because sum(Vi) is small…


