
CS 9
Week 2 Problems

Andrew Benson
Ian Tullis

3 Problems

● Problem 2-1 has a video walkthrough on Canvas,
generously created by Ian

● Problem 2-2 will be discussed in-class
● Problem 3-3 will have a written explanation at the end

of the slides

● Pick a problem to work on for ~35 minutes. If possible,
try to write code to implement your solution. I generally
aim to spend about half the time brainstorming
solutions and half the time writing code.

⭐ Problem 2-1: Balanced Parentheses
● You are given a string where each character is one of:

() [] { } < >
● Your goal is to determine whether the string is “balanced” - that is, each

open bracket (or [or { or < is correctly closed in the right order by its
corresponding closing bracket) or] or } or >. Hopefully this matches
your intuitive sense of what feels balanced and valid.
○ Part 1: Solve this for the case where only () are allowed
○ Part 2: Extend your solution for all given bracket types

● Input is the string, output is true or false
● Examples:

○ Input: “((()()))” Output: true
○ Input: “)(” Output: false
○ Input: “()[]<{}>” Output: true
○ Input: “(<)>” Output: false

⭐ Problem 2-1: Balanced Parentheses
● Some thoughts (only if you need a hint!):

○ Do some examples. The given specifications for balanced
parentheses aren’t very rigorous, so try to refine how you intuitively
can determine whether a string is balanced or not.

○ What must be true about the first character?
○ Given an open bracket, how do you know which is its

corresponding closing bracket?
○ For Part 2: if you’re having trouble keeping track

of…something…maybe there’s a data structure that suits your
needs?

⭐⭐ Problem 2-2: Separating Anagrams
● You are given a list of lowercase English strings (both count and length

could be large, like 104). It’s possible that some of these strings are
anagrams of each other. Our goal is to divide up the strings into
groups where within each group, the strings are anagrams of each
other.

● Input: A collection of strings, output: A collection of collections of
strings, where within each inner collection, each string is an anagram
of every other string in the collection

● Examples:
○ Input: {“rat”, “chain”, “tar”, “soon”, “china”, “art”}

Output: {{“art”, “rat”, “tar”}, {“soon”}, {“china”, “chain”}}
○ Input: {“bone”, “bones”}

Output: {{“bones”}, {“bone”}}

⭐⭐ Problem 2-2: Separating Anagrams
● Some thoughts (only if you need a hint!):

○ What’s a brute force way to do this?
○ How can you determine whether two words are anagrams?
○ Note that the strings are lowercase English - that limits the

possible characters that appear.
○ What if you had n words that are supposedly all anagrams of each

other - how could you verify that quickly?
○ If you have already grouped the first k words into anagram groups,

and you’re looking at the (k+1)th, could you determine if it’s part
of a previously analyzed anagram group?

⭐ ⭐ ⭐ Problem 2-3: Sphere*

● Part 1: How would you write code to take a uniformly random
sample from the outer shell of a sphere of radius 1? Can you
find a randomized method that works?

● Part 2: Does your method generalize to, e.g., 100-dimensional
"spheres"? Explain why or why not.

*anagramming this word is not
recommended

The following slides discuss solutions

Separating Anagrams

● How do we determine if strings are anagrams?

Separating Anagrams
● How do we determine if strings are anagrams?
● Anagrams are strings where we don’t care about order,

so they’re just bags of letters - two strings are
anagrams if they are the same bag of letters

Separating Anagrams
● How do we determine if strings are anagrams?
● Anagrams are strings where we don’t care about order,

so they’re just bags of letters - two strings are
anagrams if they are the same bag of letters
○ Idea 1: Impose a standard order by sorting the

strings - two strings are anagrams iff their sorted
versions are equal

state
taste

aestt
aestt

Separating Anagrams
● How do we determine if strings are anagrams?
● Anagrams are strings where we don’t care about order,

so they’re just bags of letters - two strings are
anagrams if they are the same bag of letters
○ Idea 2: Compare the bags of letters directly - bags

of letters are frequency count dictionaries (hash
tables mapping letters to the number of
appearances)

state
taste

{a: 1, e: 1, s: 1, t: 2}
{a: 1, e: 1, s: 1, t: 2}

Separating Anagrams
● What would a brute force solution be?

Separating Anagrams
● What would a brute force solution be?

○ Keep track of all your anagram collections, perhaps
in a list

○ For each string, see if it matches of these
collections by seeing if it’s an anagram of one of its
strings

● What’s the complexity?

Separating Anagrams
● What would a brute force solution be?

○ Keep track of all your anagram collections, perhaps
in a list

○ For each string, see if it matches of these
collections by seeing if it’s an anagram of one of its
strings

● What’s the complexity?
○ Determining if anagrams: O(k) where k is the length

of the longest string
○ In the worst case, there are O(n) anagram

collections (where n = number of strings), so O(n2k)

Separating Anagrams
● Where’s the redundancy / inefficiency in this brute force

solution?

Separating Anagrams
● Where’s the redundancy / inefficiency in this brute force

solution?
○ We have to “linear search” through all collections to

“lookup” what collection a string is part of
■ Can we do this faster?

Separating Anagrams
● Where’s the redundancy / inefficiency in this brute force

solution?
○ We have to “linear search” through all collections to

“lookup” what collection a string is part of
■ Can we do this faster?

● Hash tables provide O(1) lookup. Given a
string, can we somehow extract “a key” that
allows us to lookup the anagram collection?

Separating Anagrams
● Where’s the redundancy / inefficiency in this brute force

solution?
○ We have to “linear search” through all collections to

“lookup” what collection a string is part of
■ Can we do this faster?

● Hash tables provide O(1) lookup. Given a
string, can we somehow extract “a key” that
allows us to lookup the anagram collection?
○ Yes. We could use the sorted string, or

the letter frequency count dictionary. (The
latter needs to be made hashable.)

Separating Anagrams
● Sorted string as key approach

● Given a new string, we’d sort it, and lookup in this map
whether we have an anagram for that anagram
collection

● Complexity: O(nk logk)

{state, taste}aestt

eilsv {lives, elvis}

Separating Anagrams
● Letter frequency dictionary as key approach

○ Problem: in most languages, dictionaries are not
hashable, so they can’t be keys of a map

○ Solution: Serialize it into a string somehow!
(Why is this constant time?)

● Complexity: O(nk)

{state, taste}a1e1s1t2

{lives, elvis}e1i1l1s1v1

A possible implementation

def separate_anagrams(strings):
 anagrams = {}
 for s in strings:
 key = serialize_to_lettercount(s)
 anagram_collection = anagrams.get(key, set())
 anagram_collection.add(s)
 anagrams[key] = anagram_collection
 return list(anagrams.values())

def serialize_to_lettercount(s):
 freq = {}
 for letter in s:
 old_count = freq.get(letter, 0)
 freq[letter] = old_count + 1
 res = ""
 for letter in sorted(freq.keys()):
 res += letter
 res += str(freq[letter])
 return res

Don't let us forget to say
the password

Sphere: solution
It may seem that we can choose two polar
coordinates θ and Φ, each uniformly at random
from [0, 2π], and then take the point in that direction
that is a distance of 1 away from the origin.

But this is not a uniform sample! Imagine choosing
a latitude on the Earth's surface, for instance, then
choosing a point on that latitude. It's clearly wrong
for the equator and the North Pole to get the same
weight!

We can maybe try to correct for this by setting up
the right multivariable integral, but, ew, calculus.

What if… we imagine the sphere being inscribed in a 2 x 2 x
2 cube, and then choose a point uniformly at random from
within the cube? (which is easy – just take uniform random
x, y, z in the interval [0, 2]).

We check if our point is in the sphere. Also easy – just see
if x2 + y2 + z2 ≤ 1. If the point is outside the sphere, we just
try again until we get one inside the sphere.

Then we draw a ray from the center of the sphere through
our point and continue until we hit the shell (forming a
radius), and take that new point as our sample.

This works because we are sampling the volume within the
sphere uniformly, and there is a unique radius from each
point back to the origin. By symmetry, we are no more likely
to land on one radius versus another.

For a 3D sphere, the chance of getting a point within the sphere is
the volume of a unit sphere divided by the volume of a 2x2x2 cube,
i.e., (4π(13)/3) / 23 ≈ 4.19 / 8. So we have a little over a 50% chance
of getting a point in the sphere, and we can just try until we get
one.

But in higher dimensions, the hypersphere occupies an
increasingly small fraction of the hypercube! E.g., a 10-dimensional
unit sphere takes up only about 0.25% of the area of the cube. As
the dimension increases further, this gets much worse, until we
have a negligible chance of sampling a point in the sphere.

This situation comes up in machine learning! It's an example of the
so-called "curse of dimensionality". CS168 has more detail…

Even for the 3D sphere, another issue (in
practice) is that a computer can't really choose
an arbitrary point within the cube. Only certain
discrete points are possible, depending on
what level of precision the computer can
handle. Because these allowable points are in
a lattice-like arrangement, certain radii are in
fact much more likely to be hit than others…

