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Announcements

● This is the last set of problems! Next week, there is only a 
meeting on Tuesday.
○ Final thoughts, and some stuff about ML interviews…

● You can get 1 bonus point for doing the course feedback survey 
via Axess (when it opens) and then letting us know on 
Gradescope that you did it.
○ We have no way (or intention) of matching your Gradescope 

feedback to your Axess feedback. But you can always space 
them apart by some random amount of time…



⭐ Problem 9-1: Paint It Black

You have a binary tree in which each of the N 
nodes (3 ≤ N ≤ 9999) has either 0 or 2 
children. Initially, every node is colored red.

You start at the root, and automatically turn 
that node black. Thereafter, you can only 
move from your current node to an adjacent 
node. Each time you visit a node, you 
automatically toggle its color from red to 
black (or vice versa). You are done when 
every node is black (it doesn't matter where 
you finish). Write code to do this.



⭐ Problem 9-1: Example

Start at root, 
automatically 
turn it black
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⭐ Problem 9-1: Example

All done!

(Note: this was 
just one way of 
doing it…)



⭐⭐ Problem 9-2: Polynomials
In this problem, a polynomial is given as a sum of terms, each of the 
form

(a0 + a1x + a2x2 + …)b

We will represent each such term as a list [a0, a1, a2, ..., b], 
where each element is an integer,  the last element is understood to be 
the exponent (1 or greater), and the next-to-last element is not 0.

So, for example, the expression (1 - x)2 + (-3 + x3)1 would be given as:

[[1, -1, 2], [-3, 0, 0, 1, 1]]



⭐⭐ Problem 9-2: Polynomials

Your code will be presented with two polynomials in this form, and 
must determine whether they are the same. Example:

[[1, -1, 2], [-3, 0, 0, 1, 1]]
[[-1, 1, 3], [-1, 2, 2], [-2, 1]]

These turn out to be almost, but not quite, the same! If the second 
polynomial had another [0, -1, 1] term, they would be the same. 
(Might be worth checking this by hand to get a feel for the setup…)

First try to write code that would work on small examples, then think 
about how to handle large ones. (This is intentionally vague…)



⭐⭐⭐ Problem 9-3: MissingNo.
Your solution is only allowed to use a constant amount of 
memory and a constant number of passes over the data. Storing 
any number takes constant memory regardless of its size.

You are presented with a number N and a (not necessarily sorted) 
list of N numbers, in a streaming fashion (you cannot edit the list). 
Each number from 1 to N occurs exactly once in the list, except:

● (warm-up) One number is missing. (The list is length N-1)
● (harder) Two numbers are missing. (length N-2)
● ⭐⭐⭐⭐(even harder) Three numbers are missing. (length 

N-3)

Determine the missing number(s).



Solutions to 9-2 (discussed in-class)



Overall Idea
● What does it mean for two polynomials to be the same?

● Every polynomial can be uniquely expressed in the form

a0 + a1x + a2x2 + …

up to some power. (Note the lack of an overall exponent 
here.) We'll call this a standard form.

● So to see if two expressions are really the same polynomial, we 
can put them both in this standard form and then compare.



Road map
For each polynomial,

● Convert each term to a standard form, then add the terms 
together to get an overall standard form.
○ To do this, we need to be able to add standard forms, 

and also deal with exponents.
■ To add two standard forms, we can add the lists of 

coefficients entry-wise.
■ To deal with exponents, we can multiply a term by 

itself (and then a running product) over and over.
● To multiply two standard forms, we do 

something like the grade school multiplication 
algorithm.



Adding standard forms



Multiplying standard forms

(We could improve this by using binomial coefficients to calculate 
the new coefficients directly.)



Handling exponents

(There are also better ways to do this. One good trick to know is 
repeated squaring. For example, to compute the 13th power of 
some x, first square it to get x2, then square that to get x4, then 
square that to get x8. Then take x times x4 times x8, since
13 = 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8. This takes many fewer operations 
than just finding x times x times x etc.)



Putting it together



Hey, that was just boring math

● But the implementation details were nontrivial!

● And sometimes, interview problems are math 
masquerading as computer science.
○ (Arguably, computer science is math masquerading 

as computer science)

● One issue: this blows up for even modestly large 
exponents. Is there some better way to do this?



A different take
● What does it mean for two polynomials to be the same?

● For every input, they must produce the same output as 
each other.

● So if we find an input that makes our two polynomials 
produce different results, they are not the same…

● …and evaluating a polynomial at an input is way easier than 
doing the grindy additions/multiplications to find standard 
forms.



But wait…
● What if we just happen to pick an input where the two 

polynomials happen to produce the same result, even 
though they are different?

● No problem! Just try a bunch of different inputs. If we 
ever get different outputs, return DIFFERENT. 
Otherwise, eventually return SAME.

● But how do we know how many different inputs to try?



But wait…
● Let p(x) and q(x) be our two polynomials we're comparing. 

Let's think about the difference between the two, p(x) - q(x).

● Now, p(x) - q(x) is itself a polynomial, and its degree 
(highest-order exponent) is no greater than the degree of 
either p(x) or q(x).

● Also, a polynomial of degree d can have at most d distinct 
roots (inputs that make the polynomial output 0). (FWIW, 
this is called the Fundamental Theorem of Algebra)

● Therefore, if we check more than d random inputs, we 
should be fine.



Another complication
● These values are still going to get pretty enormous…

● We can carry out all computations modulo some large 
prime. Why a prime? The usual answer is that this is 
necessary for division to be possible, but we don't care 
about that here…
○ We do want the limit on the number of roots to still hold 

even in this modular arithmetic world, and choosing a 
prime guarantees that (for hard mathy reasons).

● (There are efficient ways to do an exponentiation and take 
that mod some value, but we omit that here for simplicity.)



Now it all fits on one slide!



Takeaways
● Randomized algorithms are powerful (and sometimes 

their randomness can be removed for extra assurance).

● Make sure you think about how to handle very large 
numbers – the "take everything modulo a prime" trick is 
very useful in these problems and even in practice!

● Math-related problems do show up in these interviews, 
so if math is a weak point for you, make sure to get 
practice in.



Don't let Ian forget to say the 
password!!!!!!



Solutions to 9-3



One missing number
● The "just put everything in a hash table" strategy (e.g. from the 

Legs problem in Week 1, which feels like a million years ago 
now) does not work here, since it uses more than constant 
memory.

● Notice that if the numbers were arbitrary rather than 1 through 
N, the problem would be impossible – we wouldn't have any way 
to know what was missing. So we have to somehow use this 
special condition.

● We know the sum of all numbers from 1 to N… it's (N)(N+1)/2. 
So we can find the sum of our list (using constant space) and 
subtract it from (N)(N+1)/2, and there's our missing number!



Two missing numbers
● In this case, we can use the previous method to find the sum, a + b, of the 

two missing numbers a and b. So it seems like we're close, but there are 
probably lots of pairs of numbers with that sum… we'd still need 
non-constant space to check them all. We need another piece of 
information!

● This is where we can take a huge leap… what if we also store the sum of 
squares (SS) of the numbers?

● There is a formula for the sum of squares of all numbers from 1 to N… it's 
(N)(N+1)(2N+1)/6. So if we subtract SS from that, we get the sum of squares 
of the missing numbers – a2 + b2.

● We have a + b from before. Now we use the fact that (a + b)2 = a2 + 2ab +  b2, 
and solve for 2ab, and then plug that back into our a + b expression. Voila!



Two missing numbers - other solutions
There are a couple other ways to solve this problem.

● One is to find a + b as before, then use the fact that (a + b)/2 is the 
average of the missing numbers. One of them (without loss of generality, 
say it's a) is less than that average, and one is greater. So if we compute 
the sum of all numbers less than or equal to that average, we will be 
missing only a. Note that this requires a second pass over the data.

● By the way, how do we deal with the potentially enormous sums (or, 
worse yet, sums of squares)? One option is to compute everything 
modulo a large prime, as in the slick solution to the Polynomials problem.



Two missing numbers - other solutions
There is also a clever method involving XOR, with no overflow issues!

● We take the XOR of the all of the values, and XOR that with the XOR of all 
values from 1 to N. What's left is the XOR of a and b; call that c.

● If there is a 1 bit in c, then one of a and b has a 1 in that position and the 
other has a 0.

● Also, there must be at least one 1 bit in c, since for c to be all 0s, a and b 
would have to be the same, which we know is not true.

● So we pick some 1 bit in c. If we XOR all the values that have that bit set, 
then XOR that with the XOR of all values between 1 and N that have that bit 
set, we get one of our missing numbers. Then we XOR that with c to get 
the other.

(It's also easy to solve the one-missing version of the problem using XOR.)



Three missing numbers?
This isn't a standard part of the question, but you can imagine extending one 
of the previous methods.

● We could use the "average" method – now, either two of the missing 
numbers will be below the average and one will be above it, or one will be 
the average and there will be one above that and one below that. There 
are some messy details/cases to handle, and this uses multiple passes.

● Or we can maintain a sum of cubes as well, and there is a formula for 
that. Then we can maybe? solve a system of equations involving a + b + 
c, a2 + b2 + c2, and a3 + b3 + c3. I started on it and found abc and then ran 
out of steam. But that seems to maybe turn into number theory rather 
than algebra at that point. If you do all the math, let me know!

● Not sure about extending the XOR method. Seems ugly if doable.


